[原创] AI芯片的新风向

2020-07-14 14:00:03 来源: 半导体行业观察


人工智能已经成为目前芯片行业的一个重要驱动力。回顾人工智能在半导体行业的发展,我们可以清晰地看到一条从云到终端的演进路线。

最初,人工智能主要是作为一种服务部署在云端。本代人工智能基于大数据和神经网络,因此在训练时候需要大量的算力,在云端部署的时候也需要算力做支撑,因此云端人工智能领域中以Nvidia为代表的GPU加速人工智能成为了关注焦点,同时也有以Graphcore、Habana为代表的云端专用人工智能芯片公司与GPU分庭抗礼。2018年之后,随着模型和芯片设计的优化,人工智能逐渐从云端下沉到手机等强智能设备终端,在手机上基于人工智能算法的超分辨、美颜、人脸识别等应用也渐渐得到了主流认可,相应的芯片(IP)也就成为了手机SoC上不可或缺的一部分,高通、苹果、华为海思等都拥有自己的高性能人工智能加速IP,用以支持手机人工智能应用。

而随着人工智能技术的进一步演进,我们看到它正在进一步和物联网结合,超低功耗人工智能正是这个人工智能继续下沉的新动向。

超低功耗人工智能芯片的应用场景


超低功耗人工智能芯片(IP)的工作功耗在数十毫瓦或更低(作为比较,手机端人工智能IP的工作功耗往往在数百毫瓦到瓦级别,而云端人工智能加速卡功耗通常在数百瓦),同时往往结合事件驱动技术,即绝大部分时间计算部分都处于休眠状态,仅仅在发生相关事件时才会启动,这样就可以把平均功耗降低到毫瓦数量级以下。

超低功耗人工智能可以应用在什么场景下呢?消费电子领域中就有超低功耗人工智能的一席之地。在下一代智能设备如可穿戴设备和智能眼镜类设备中,设备由于尺寸等原因电池容量有限,而这些设备需要执行智能生物信号处理(例如智能手表上的心率检测)、手势识别(例如在目前的HoloLens中,基于人工智能的手势识别是主要用户交互方式)、语音识别等等,因此需要非常高能效比的人工智能加速模块。除此之外,在智能家庭等领域,超低功耗人工智能也有落地机会,例如目前的智能门锁市场,加入人脸识别会使智能门锁的用户体验大大改善,但是智能门锁通常必须依靠电池供电,而且预期的电池寿命至少要半年到一年,这样一来对于执行人工智能计算的模块就提出了非常高的能效比需求。

除了消费电子之外,工业应用中也需要超低功耗人工智能。工业应用中对于超低功耗人工智能的需求往往来源于智能传感器。这类传感器安装在机器、机械臂、管道等重要环境中,需要能时刻监测各类信号并且运行相应的人工智能算法来判断运行状况。在这些场景下,传感器必须依靠电池供电,而超低功耗人工智能可以大大减少电池消耗,这也意味着传感器更换电池的间隔可以提升,这也就大大降低了这类传感器系统的部署和维护成本。

超低功耗人工智能芯片的技术路径


目前,超低功耗人工智能芯片大概可以分为三种技术路径。

首先是基于数字电路的超低功耗人工智能加速模块设计。 使用数字电路向超低功耗方向的优化方法首先是从系统架构层面做优化,尽量减小模型的体积,并优化数据流以降低内存访问开销。此外,在电路层面可以降低电源电压,甚至使用亚阈值逻辑门设计,以降低电路运行时的功耗,以及漏电流。使用数字电路方法的优势在于可以更容易地与人工智能计算之外的模块集成并构成SoC,而无需在数模转换上消耗额外能量。

第二条技术路径是使用模拟计算来完成神经网络的计算。 模拟计算往往和内存内计算相结合以实现高能效比,其具体的思路是目前人工智能计算中往往存储访问是能量消耗最大的部分,而使用模拟计算则可以在存储(如SRAM或Flash等NVM)读出电路中直接做计算,这样就省去了数据读出再计算的步骤,而可以直接在内存内完成计算。使用模拟计算配合内存内计算往往可以实现很高的能效比,例如欧洲的著名半导体研究机构IMEC宣布将在未来数年内完成能效比高达10000TOPS/W的模拟计算人工智能加速模块。但是模拟计算对于模型往往有较多限制,例如必须在计算精度较低时仍然能保证准确率等,因此需要很好的软件/硬件协同设计。

存内模拟计算是超低功耗人工智能的主要技术路径之一

第三条道路则是在模型设计上使用脉冲神经网络的设计(神经模态芯片)。 使用脉冲神经网络设计的神经模态芯片仅仅在神经元被激活时消耗能量,而绝大部分神经元在大部分情况下都处于休眠状态而几乎不消耗能量,因此其平均能效比可以做到比基于主流卷积神经网络的芯片高一个数量级。脉冲神经网络和神经模态芯片的难点主要在于模型设计和训练上存在很高的门槛,此外如何对相应的脉冲神经网络模型做电路级优化也有很高的技术含量。

超低功耗人工智能芯片竞争格局:中国公司占据有利地位


超低功耗人工智能芯片市场目前仍然处于起步阶段,但是随着未来物联网和下一代智能设备的技术演进,预计在未来几年内市场热度会越来越高。目前,从事超低功耗人工智能芯片开发的主要初创公司,但是未来超低功耗人工智能芯片的下一代领导者很可能就出现在这些初创公司中。

在消费电子领域,美国的Syntiant得到了亚马逊Alexa Fund、微软M12和Intel Capital等行业资本的支持,其主要产品是针对智能设备语音处理的超低功耗芯片。与此相对,中国的初创公司在这个领域的布局则更加多样。来自清华大学的清微科技使用可重构电路技术,其超低功耗产品能覆盖语音识别、视觉识别等多个领域,可望为下一代智能设备赋能。另一家中国公司则是SynSense,SynSense的技术路线是使用脉冲神经网络,技术来自于神经脉冲网络权威,苏黎世大学Giacomo Indiveri教授的团队。目前SynSense的脉冲神经网络已经完成了多次流片迭代和验证,相关的产品覆盖了视觉、生物信号处理、语音识别等,平均功耗可以低至微瓦数量级。此外,SynSense还于最近推出了使用神经脉冲网络结合动态视觉传感器DVS的产品Speck,该产品能真正实现事件驱动,在绝大多数时间运行于超低的功耗下,而在检测到动态事件后DVS能提供超高的视觉采样频率,并且配合脉冲神经网络实现超高性能/超低延迟的视觉信号处理,从而兼具超低功耗和高性能。


而在工业应用领域,同样来自清华大学的湃方科技走在了全球前列,成为了在工业领域能真正落地的超低功耗人工智能算法和芯片解决方案公司。湃方科技的应用场景涵盖了卫星、机械臂、发电机、电机等等重要的工业应用,其芯片能提供高达50TOPS/W的能效比。

目前,在超低功耗人工智能芯片领域,中国的初创公司和团队无论是数量还是质量都走在了全球前列。让我们期待中国能在未来的超低功耗人工智能领域继续引领全球的潮流。


*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。


今天是《半导体行业观察》为您分享的第2370期内容,欢迎关注。

推荐阅读


1nm将如何实现?VLSI 2020与会专家有“妙招”

英伟达上位史

挑战龙头的芯片“后浪”们


半导体行业观察

半导体第一垂直媒体

实时 专业 原创 深度


识别二维码 ,回复下方关键词,阅读更多

英伟达|中芯国际|CPU|晶圆| FPGA 5G|谷歌|射频


回复 投稿 ,看《如何成为“半导体行业观察”的一员 》

回复 搜索 ,还能轻松找到其他你感兴趣的文章!

责任编辑:Sophie
半导体行业观察
摩尔芯闻

热门评论