清华微电子所团队提出AI芯片的存储优化新方法
来源:内容来自 芯系清华,谢谢。
6月2日 ~ 6日,第45届国际计算机体系结构大会(International Symposium on Computer Architecture,简称ISCA)在美国洛杉矶召开。清华大学微电子所博士生涂锋斌在会上做了题为《RANA:考虑eDRAM刷新优化的神经网络加速框架》(RANA: Towards Efficient Neural Acceleration with Refresh-Optimized Embedded DRAM)的报告。该研究成果大幅提升了人工智能计算芯片的能量效率。
清华微电子所博士生涂锋斌报告现场
ISCA是计算机体系结构领域的顶级会议。本次大会共收到378篇投稿,收录64篇论文,录用率仅为16.9%。本文是今年中国唯一被收录的署名第一完成单位的论文。尹首一副教授为本文通讯作者,论文合作者还包括清华大学微电子所魏少军教授和刘雷波教授等。
随着人工智能应用中神经网络规模的不断增大,计算芯片的大量片外访存会造成巨大的系统能耗,因此存储优化是人工智能计算芯片设计中必须解决的一个核心问题。可重构研究团队提出一种面向神经网络的新型加速框架:数据生存时间感知的神经网络加速框架(RANA)。RANA框架采用了三个层次的优化技术:数据生存时间感知的训练方法,混合计算模式和支持刷新优化的eDRAM存储器,分别从训练、调度和架构三个层面优化整体系统能耗。实验结果显示,RANA框架可以消除99.7%的eDRAM刷新能耗开销,而性能和精度损失可以忽略不计。相比于传统的采用SRAM的人工智能计算芯片,使用RANA框架的基于eDRAM的计算芯片在面积开销相同的情况下可以减少41.7%的片外访存和66.2%的系统能耗,使人工智能系统的能量效率获得大幅提高。
数据生存时间感知的神经网络加速框架(RANA)
可重构计算团队近年来基于可重构架构设计了Thinker系列人工智能计算芯片(Thinker I,Thinker II,Thinker S),受到学术界和工业界的广泛关注。可重构计算团队此次研究成果,从存储优化和软硬件协同设计的角度大幅提升了芯片能量效率, 为人工智能计算芯片的架构演进开拓了新方向。
今天是《半导体行业观察》为您分享的第1610期内容,欢迎关注。
关注微信公众号 半导体行业观察(ID:icbank) ,后台回复以下关键词获取更多相关内容
华虹 | 摩尔定律 | 材料 | 面板 | 晶体管 | 开源 | 韦尔股份 | 封装 | 展会
回复 投稿,看《如何成为“半导体行业观察”的一员 》
回复 搜索,还能轻松找到其他你感兴趣的文章!
点击阅读原文了解摩尔精英
- 半导体行业观察
- 摩尔芯闻
最新新闻
热门文章 本日 七天 本月
- 1 国产EDA突破,关键一步
- 2 在这个平台上,硬件创新跑出了“中国速度”
- 3 思尔芯第八代原型验证S8-100全系已获客户部署,双倍容量加速创新
- 4 Ampere 年度展望:2025年重塑IT格局的四大关键趋势