中国如何突破AI芯片限制?
2024-06-18
10:53:54
来源: 互联网
点击
Gartner研究副总裁盛陵海日前在一场分享会上直言,在美国几度加码限制之后,中国获得先进AI芯片和技术的难度大增。不过,在吸取了过去的经验教训后,中国已经提前做了一些准备,不至于出现手足无措的情况。
“我们现在已经走到了自主研发的阶段,展望未来5到10年,我们有机会可以通过积极新的路径实现‘禁运’封锁的整体突破。”盛陵海乐观道。“在当下非常火热的大模型方面,中国与国际企业的差距并没有多大。这足以证明我们可以实现自主研发,这也是我坚信我们能够搞好自己的AI芯片的原因。”盛陵海接着说。
在具体讲如何突破AI芯片之前,盛陵海首先强调,国内AI企业必须要放弃幻想。因为美国对我们的封锁大概率会一直存在。为此,只有转向本土供应链,只有坚持使用国产芯片,才是最终的解决方案。虽然转向国产,必然会碰到不少问题和局限性。但在海外对我们持久限制的既定前提下,继续使用海外芯片厂商的“降规格”版本产品是权宜之计,我们必须做好打游击战的准备。
“唯有转向国产芯片,把碰到的问题一一破解,把国内的整个AI芯片乃至整个生态培养起来才是长久之道。”盛陵海表示。当然,可以明见的是,在这种发展方式下,中美AI芯片行业会割裂成两个生态,这从全球化的角度来看当然是不太有利。
“但也正是在这种竞争态势之下,让饱受英伟达重压的国产AI芯片找到可乘之机”。盛陵海告诉半导体行业观察。他进一步指出,对于国内的AI芯片企业来说,去训练市场跟英伟达等现有对手掰手腕,也是胜算不大的,事实证明也是如此。但企业们可以在广大的AI推理芯片市场找到突破点,这实际上也是一个庞大的市场。
Gartner预测,到2025年,云端的“推理”需求会超过“训练”。这一方面是因为过去几年厂商在训练方面投入了巨额的资源,这种投资力度不可能一直持续下去;另一方面,诸如OpenAI应用端被挤爆,无法登录的现状频发,证明我们在推理上面的投入还是不够多。
基于这两点现状,大家自然就会往推理侧投资更多芯片,这也是Gartner做出2025年会出现交叉点,之后推理需求量会比训练增加更快预测的原因。当然,这个成立的前提是会有越来越多的人使用AI应用。
Gartner同时还预测,到2026年之后,更多基于GenAI的要求应答将在端侧而非云端处理。在云端投入持续高涨,Gartner认为这是一条必经之路。
“设备端可以支持十亿到一百亿规模的模型,边缘端则能支持一百亿到一千亿的这个规模的大模型,这意味着它们都可以实际支持一定的企业或者个人的应用。换而言之,这个从技术上其实也是可行的。”盛陵海说。他进一步指出,边缘侧和端侧的生成式人工智能应用会从智能手机、电脑,不断地扩散、到消费物联网、智能家居和汽车。
对于国产AI芯片企业而言,在这股大浪潮下,针对推理方面,也可以从各个环节入手,寻找机会。不过,正如大家所见,现在市场上的很多解决方案都是各自为政,这样带来的重复造轮子和生态不兼容的副作用影响深远。
“国内官方组织或者企业领头羊如果能够针对生成式AI的推理、加速定一个标准,然后搞一些可以通用的架构,将其标准化之后,软件和生态的开发相对来说就容易一点。”盛陵海建言道。
届时,我们生活的整个科技世界,也将在AI的推动下,迈向一个新台阶。
“我们现在已经走到了自主研发的阶段,展望未来5到10年,我们有机会可以通过积极新的路径实现‘禁运’封锁的整体突破。”盛陵海乐观道。“在当下非常火热的大模型方面,中国与国际企业的差距并没有多大。这足以证明我们可以实现自主研发,这也是我坚信我们能够搞好自己的AI芯片的原因。”盛陵海接着说。
在具体讲如何突破AI芯片之前,盛陵海首先强调,国内AI企业必须要放弃幻想。因为美国对我们的封锁大概率会一直存在。为此,只有转向本土供应链,只有坚持使用国产芯片,才是最终的解决方案。虽然转向国产,必然会碰到不少问题和局限性。但在海外对我们持久限制的既定前提下,继续使用海外芯片厂商的“降规格”版本产品是权宜之计,我们必须做好打游击战的准备。
“唯有转向国产芯片,把碰到的问题一一破解,把国内的整个AI芯片乃至整个生态培养起来才是长久之道。”盛陵海表示。当然,可以明见的是,在这种发展方式下,中美AI芯片行业会割裂成两个生态,这从全球化的角度来看当然是不太有利。
“但也正是在这种竞争态势之下,让饱受英伟达重压的国产AI芯片找到可乘之机”。盛陵海告诉半导体行业观察。他进一步指出,对于国内的AI芯片企业来说,去训练市场跟英伟达等现有对手掰手腕,也是胜算不大的,事实证明也是如此。但企业们可以在广大的AI推理芯片市场找到突破点,这实际上也是一个庞大的市场。
Gartner预测,到2025年,云端的“推理”需求会超过“训练”。这一方面是因为过去几年厂商在训练方面投入了巨额的资源,这种投资力度不可能一直持续下去;另一方面,诸如OpenAI应用端被挤爆,无法登录的现状频发,证明我们在推理上面的投入还是不够多。
基于这两点现状,大家自然就会往推理侧投资更多芯片,这也是Gartner做出2025年会出现交叉点,之后推理需求量会比训练增加更快预测的原因。当然,这个成立的前提是会有越来越多的人使用AI应用。
Gartner同时还预测,到2026年之后,更多基于GenAI的要求应答将在端侧而非云端处理。在云端投入持续高涨,Gartner认为这是一条必经之路。
“设备端可以支持十亿到一百亿规模的模型,边缘端则能支持一百亿到一千亿的这个规模的大模型,这意味着它们都可以实际支持一定的企业或者个人的应用。换而言之,这个从技术上其实也是可行的。”盛陵海说。他进一步指出,边缘侧和端侧的生成式人工智能应用会从智能手机、电脑,不断地扩散、到消费物联网、智能家居和汽车。
对于国产AI芯片企业而言,在这股大浪潮下,针对推理方面,也可以从各个环节入手,寻找机会。不过,正如大家所见,现在市场上的很多解决方案都是各自为政,这样带来的重复造轮子和生态不兼容的副作用影响深远。
“国内官方组织或者企业领头羊如果能够针对生成式AI的推理、加速定一个标准,然后搞一些可以通用的架构,将其标准化之后,软件和生态的开发相对来说就容易一点。”盛陵海建言道。
届时,我们生活的整个科技世界,也将在AI的推动下,迈向一个新台阶。
责任编辑:sophie
相关文章
- 半导体行业观察
- 摩尔芯闻
最新新闻
热门文章 本日 七天 本月
- 1 NVIDIA重磅出击:三台计算机助力人形机器人飞跃
- 2 TSN芯片,上车!
- 3 汽车芯片需求激增,南芯科技加速推进“第二增长曲线”
- 4 奕行智能(EVAS Intelligence)完成数亿元A轮融资,加速推出RISC-V计算芯片产品,共同助力新时代到来