5G的高速秘密:载波聚合技术详解
来源:内容来自万物云联网 ,谢谢。
在LTE-Advanced中使用载波聚合(Carrier aggregation),以增加信号带宽,从而提高传输比特速率。
为了满足LTE-A下行峰速1 Gbps,上行峰速500 Mbps的要求,需要提供最大100 MHz的传输带宽,但由于这么大带宽的连续频谱的稀缺,LTE-A提出了载波聚合的解决方案。
载波聚合(Carrier Aggregation, CA)是将2个或更多的载波单元(Component Carrier, CC)聚合在一起以支持更大的传输带宽(最大为100MHz)。
每个CC的最大带宽为20 MHz
为了高效地利用零碎的频谱,CA支持不同CC之间的聚合(如图2)
相同或不同带宽的CCs
同一频带内,邻接或非邻接的CCs
不同频带内的CCs
从基带(baseband)实现角度来看,这几种情况是没有区别的。这主要影响RF实现的复杂性。
每个CC对应一个独立的Cell,在CA场景中可以分为以下几种类型的Cell:
Primary Cell(PCell):主小区是工作在主频带上的小区。UE在该小区进行初始连接建立过程,或开始连接重建立过程。在切换过程中该小区被指示为主小区;
Secondary Cell(SCell):辅小区是工作在辅频带上的小区。一旦RRC连接建立,辅小区就可能被配置以提供额外的无线资源;
Serving Cell:处于RRC_CONNECTED态的UE,如果没有配置CA,则只有一个Serving Cell,即PCell;如果配置了CA,则Serving Cell集合是由PCell和SCell组成;
载波聚合的作用:
载波聚合(Carrier Aggregation)的设计难点
下行CA的设计挑战包括:
下行链路(Downlink)的灵敏度
谐波的影响
在CA RF射频设计中遇到的desense(灵敏度恶化)挑战
如果为每个频段设计独立的双工器,确保下行链路频段不受影响;然而连接两个双工器路径则可能会影响两个双工器的滤波器特性,从而导致您失去以系统灵敏度要求运行时所需的传输和接收路径之间的隔离度。
在两个频带之间具有较大频率间隔(例如,中频带和低频带之间的CA组合)的一些CA情况下,可以添加单独的双工器。在天线和两个频带单独的专用双工器之间插入一个diplexer(天线共用器或者天线分离滤波器)。
而在CA体系结构中,一些设计者正在使用multiplexers(多工器) 和 hexiplexers(六工器) 来代替双工器(duplexers)。如果需要多工器(multiplexer),则设备内的每个单独的滤波器需要复杂的开发,因为它不像在一个封装中放置两个滤波器那样简单,因为我们期望它们将作为统一的整体在设备内工作。设计人员必须确保在多工器(multiplexer)中每个频段的滤波器能够协同工作。尽管多工器(multiplexer)的开发更具挑战性,但它简化了RF前端设计人员的工作,并增加了可用的PC板面积。下图描述了一个简单的前端,显示双工器(duplexers)和diplexer(天线共用器或者天线分离滤波器)。
产生的谐波的影响
谐波是由非线性元器件所产生,如收发信机的输出级,功率放大器(PA),双工器和开关等中所产生的。在元器件组件开发过程中,设计人员必须谨慎地权衡各种设备的性能标准,以帮助减少这些设备产生的谐波和其它互调产物所造成的影响。
RF前端设计遇到的desense(灵敏度恶化)挑战
由于滤波器抑制度不足,多个频段的无线RF信号可能会相互干扰。这意味着如果发送和接收路径之间的隔离度或者交叉隔离不足,则CA应用中出现灵敏度降低(desense)的概率较高,下面几个图片说明几种典型的desense现象。
上行链路(Uplink)CA的设计挑战
在中国市场,TDD是上行链路(UL)载波聚合的主要驱动力。 2014年,中国电信和诺基亚网络宣布推出全球首款FDD-TDD CA设备芯片组。该开发使用FDD Band3来改善LTE的覆盖,同时支持改善TDD Band 41以提高吞吐量。
上行链路带内(Intra‐band )CA是不同的上行链路CA类型中最简单的实现,因此它是大多数运营商实现上行CA的第一步。
线性
带内上行链路CA信号为移动设备设计者提供了许多挑战,因为它们可以具有更高的峰值,更大的信号带宽和新的RB配置。即使可以回退信号功率,也必须调整PA设计以实现非常高的线性度。必须考虑相邻信道泄漏(ACLR),不连续RB的互调产物,杂散辐射,噪声以及对接收灵敏度的影响。
上行链路带间(Inter‐band)CA组合来自不同频段的发射信号。在这些情况下,从移动设备发送的最大总功率不增加,因此对于两个发射频段,每个频段承载正常传输的一半功率,或比非CA信号的发射功率小3dB。
因为不同的PA用于放大不同频带的信号,并且各自的发射功率降低了,因此PA的线性度不是问题。其他前端组件,如开关,必须处理来自不同频段的高电平信号,可能会混合出或者创造出新的互调产物。这些新信号可能干扰一个正在活动的蜂窝接收机,甚至干扰本智能手机上的其他接收机,如GPS接收机。为了管理这些信号,开关必须具有非常高的线性度。
今天是《半导体行业观察》为您分享的第1358期内容,欢迎关注。
R
eading
推荐阅读(点击文章标题,直接阅读)
关注微信公众号 半导体行业观察,后台回复关键词获取更多内容
回复 比亚迪 ,看《比亚迪的芯片布局,王传福的野心》
回复 长电科技 ,看《从江阴小厂到世界前三,长电科技一路狂奔》
回复 英特尔 ,看《四面楚歌,Intel还能重回巅峰吗?》
回复 全面屏 ,看《全面屏手机给供应链带来的挑战》
回复 芯片市场 ,看《又一个被中国厂商做死的芯片市场!》
回复 展会,看《2017最新半导体展会会议日历》
回复 投稿 ,看《如何成为“半导体行业观察”的一员 》
回复 搜索 ,还能轻松找到其他你感兴趣的文章!
摩尔邀请您加入精英微信群
你好,感谢长期对半导体行业观察的关注和支持!为了方便各位精英专家交流,我们组建了一些专业、微信交流群,欢迎你加入,我们还会邀请在摩尔直播App做过技术和行业分享的100+技术大牛入群和大家交流。加群方法: 长按二维码,加群主为好友,填写加群需求信息,拉你入群。(微信限制每天好友添加数量只有300人,请耐心等待)
地域群:
上海、深圳、北京、江苏.浙江、西安、武汉、成都.重庆、合肥、厦门.晋华、大连、台湾、新加坡、日本.韩国、美国、欧洲、摩尔直播学习群。
专业群:
模拟射频设计、EDA.IP、数字芯片设计、模拟混合信号设计、版图Layout、数字PR.验证、晶圆制造Fab、设备EE、半导体材料、半导体设备、封装测试、半导体投资、市场销售、AE.FAE、嵌入式开发、实习交流、采购.IC代理、AI芯片
专业微信群规则:
1. 专业、高效交流,建议进群请修改群昵称,格式:公司或学校+职位或专业+中文或英文,请服从群主管理,如果多次违规会被请出交流群;
2. 原则上每人加不超过3个群,精彩讨论内容,群主会负责在不同群同步,既然加了群,请大家尽量置顶群,积极参与群讨论;
3. 群里聊天讨论仅限半导体专业内容,杜绝专业无关内容,特别是养生、拉票、微商等内容,严格禁止,为自己公司打广告以不引起群友反感为限;